Fourier Methods

9™ NOVEMBER 2020

R




Outline

*Fourier Series

*Application of Fourier Sine Series to a Triangular Function
*Application to the Energy in the Normal Modes of a Vibrating String
*Fourier Series Analysis of a Rectangular Velocity Pulse on String
*The Spectrum of a Fourier Series

Fourier series to Fourier Integral

*Fourier Transform



Fouriler Series

*Any function which repeats itself regularly over a given interval of space or time is called
a periodic function; e.qg. f(x) = f(x£a) where a Is the interval or period.

*Almost all periodic functions of interest using the method of Fourier Series may be

represented by the series, 1
f (x)==ag+a CcoSX+ayC0S2X+...+a, COSNX
2

+ by sin X+b, sin2x+...+ b, Sin nx

- . 2N (inx+ L sin3x+ L sin5x+ L s
Fourier series of a square wave f(x)= = (sin x + 3 sin 3x + 5 sin 5x + Z sin/7x...)
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Fourier Series In several equivalent forms

1 - : 27

f(x)= S 2 (@, cosnx+by sinnx) Fourier coefficients : a, = 1 j f (x)cosnxdx
n=1 T

0

1 = 1 27
:an+ch cos(nx—6,) b, == [ (x)sinnxdx

n=1 2

h 2 .2 2 _
where ¢, =a,+by; and tanéd,=b,/a,

()= Y de™

N=—00

where  2d, =a,—ib,(n>0) and 2d,=a_,+ib_,(n<0)




Coefficients of a, and b,

-To find the values of the coefficient either a,, or b,, let’s multiply the following equation with
cosmx or sin mx and then integrate with respect to x over the period of 0 to 2«

1 (00
flx) = = o + Z(an cosnx + b, sinnx)
n=1

*And then apply the following conditions:

Oif m#n

2T
[*" cosmxcosnxdx =14 .
Tifm=n

0

2T
fo sinmxcosnxdx =0 for allmandn

Now try to determine either a, or b,



Interpretation of the Fourier Series (1)

1) The constant term (1/2)a, : this is the average of the function over an interval.

Recall the coefficient a, : a, = % 7" f () cos nx dx

Asn =0, we have ay = %foznf(x) dx and this leads to -2

1 27 . )
= Efo f(x) dx which is the
average of the function over 2 interval .

The constant term can be varied by moving the function with respect to the x axis.

_4h,_. 1. 1. 1
f(x)—7(smx+§sm3x+€sm5x+—5|n7x...)

The periodic function is symmetric
<4
0

. . ao .
% about x axis, Its average — IS Zero.
b 2r 4 2
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Interpretation of the Fourier Series (2)

2) Generally, Fourier series Is represented by the combination of even and odd
parts. Whether the function is completely even (f(x) = f(-x)) or completely odd
(f(x) = -f(-x)) can often determined by the position of the y-axis.

For example
f(x) = 4—§(sin X+ % sin 3x + % sin 5x + % sin7x...) This periOdiC function
- I IS represented by odd
v . function with zero
| § o i constant.

1 1 1

4h
f(x)=—(cos X——C0S3X+—COSbX——cos7x...

This periodic function

r - IS represented by even
* - -
I = 3z X function with zero
2 2 2 2 constant.




Interpretation of the Fourier Series (3)

3) Terms in the series and their combination are responsible for the shape of the series
representation. ih sin x “
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* The fundamental or first
harmonic has the frequency of

the square wave. 0 : 2 tis)
« The higher frequencies build up The more the higher frequency
(ol components are added, the

the squareness of the waves.

« The highest frequencies are
responsible for the sharpness of
the vertical sides of the waves.

closer of the squareness of the
wave becomes.
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addition of first
three terms



Frequency response test of amplifiers

JUVL
Osc. '———D—‘—@) Oscilloscope
coo

Amplifier -
under test

Input J l-

S Loss of the sharpness at the edges of the

ol L 4 M \ =) Waves shows that the amplifier response Is
limited at the higher frequency range.

- e - -

Poor low
frequency response
Instability m r.‘

Square wave oscillator used to test an amplifier




Problem 10.1

After inspection of the two wave forms in the diagram what can you say about the values of the
constant, absence or presence of sine terms, cosine terms, odd or even harmonics, and range of

harmonics required in their Fourier series representation? (Do not use any mathematics.)




« Constant is zero (symmetry around X axis).
____________________ I I e >, . Reprgsented by odd function (sine
T olT function).
« More than 3 harmonics required to
faithfully represent the edge sharpness.

> T < > T < » Constant is not zero
(asymmetry around x axis).

* Represented by even and
odd functions.

» More than 3 harmonics
required to faithfully

‘ ‘ . « —>t represent the edge

2T -T T 2T sharpness.




Fourier Series for any interval

*Any section or interval of a well behaved function may be chosen and expressed in terms of
Fourier Series.

*This series will accurately represent the function only within the chosen interval.

*If the interval is represented by a Fourier cosine series the repetition will be that of an even
function, if the representation is a Fourier sine series and odd function repetition will
follow.
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Figure 10.4 A Fourier series may represent a function over a selected half-interval. The general
function in (a) is represented in the half-interval 0 < x < [/2 by f., an even function cosine series in
(b), and by f,, an odd function sine series in (c). These representations are valid only in the specified
half-interval. Their behaviour outside that half-interval is purely repetitive and departs from the
original function _
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Arguments In terms of phase angles

S0 far the arguments of cosine and sine functions are given as x assumed to be
measured In radians.

*However, If x Is assigned as a distance the a factor of 2n/l is needed to transform
the distance into an angle unit. With this factor, when x = |, the phase angle
changes by 2.

*For example, an original function shown in the figure below can be represented
as a sine series (odd function) over a half interval [0,1/2]

A~ ™ Zb sm@x
@ - u<—>i\‘ x
2, | 2,



« The given function can be represented by the sine series as follows, Wﬁf}
00 (ﬂ) X

f(x)=f,(x)=> b, sin@x 2, I

277NX

b, = f (x)sin dx

dx+ j sm 27rlnx dx}

NN




Q: Application of Fourier Sine Series
to a Triangular Function

*The figure below shows a function which we are going to describe by a sine series in half-
Interval O to =. The function is

f(x)=x (0 <X< %) This function defined over a

‘ limited interval can be used to
and f(x):n—x (%<X<7Z’j

described the behavior of a
plucked string.

f[x]:x(D-::x-::%]

f(x) = m—x (5 <x< )

f(x)
‘L\‘\
-\-\
M\,
o

n T X
- 0 5

- R 49 -




A: Application of Fourier Sine Series
to a Triangular Function

Fourier sine series is chosen to represent

Writi = b, si ' I I -
riting f(x) = >_ businnx gives the half interval of a triangular function

) . . T/2 i
b, : coefficients of b, = 2 j xsinnxdx + — j (m— x)sinnxdx
the odd part m™Jo T Jx2
B 4  nm
= 5_sin—

When n is even sinnm/2 = 0, so that only terms with odd values of n are present and

4 (sinx sin3x sin5x  sin7x
flx :E( 7 "3 sz +)
G,
Note that at x = 7/2, f(x) = 7/2, giving _ Permitted harmonics
of the plucked string




The motion of a plucked string

Dr. Dan Russell
Physics Department, Kettering University




Half Range Expansion

Expansion 1s useful when a function is defined only on a given
interval, say between 0 and L. This situation is very common in
real life: For example, the vibration of a guitar string occurs only
between 1ts bridge and tension peg.

Bridge Pickups

4 — - - Y ———— o S s, o T o T L B
T S S T 0 O - — — — —— S S— — — " ¢
- — - — < -

e S 4 S— —

Gain and
tone controls

_ http://slideplayer.com/slide/6018598/20/images/5/Half+Range+Expansion.jpg _




Application to the energy In the
normal modes of a vibrating string

*If we take a string of length | with fixed end and pluck its center a distance d, we have a
triangular configuration of the a interval as shown in the figure below.

*According to the previous section, this configuration expected to be represented by the
Fourier sine series.

I




*Under this particular situation, the series representing the plucked string at time t Is equivalent
to the total displacement of the normal modes or standing waves occurring once the string is
released.

*To find the displacement of a normal mode or standing wave vibration, the following standing
wave eguation has to be solved using the method of separation of variable.

*The wave equation : 0’y _ 1 &%
ox>  c* ot

*The solution that fits the boundary condition; i.e., y(x =0, t) = y(x=1, t) = 0, is found to be

@, X
C

Yn = (A, cosaw,t+ By, sina,t)sin <— Derive this!




Derivation of a normal mode wave
function In summary

Possible solution may be given by y(x,t) = X(x).T(t)

By substituting the solution back into the wave equation, rearrange the equation
and equate each side of the equation to a constant, we then end up with two linear
ODE as follows,

2 2
d—>2(+k2X =0 and d—-2r+v2k2T =0
dx dt

*This leads to X (x) = Cy coskx+C, sinkx
T (t) = D coskvt + D, sin kvt



Expression of a normal mode wave function

*From the derived general forms of the normal mode wave function, a particular form can be
obtained once the boundary condition, i.e. y(0,t) = y(I,t) = 0 Is considered.

y(x,t)=X(x)-T(t)=(C,coskx+C,sinkx)-(D, coskvt + D, sinkvt)

1 Apply y(0,) =0

y(x,t)=X(x)-T(t)=(C,sinkx)-(D,coskvt+ D, sinkvt)

Apply y(1,t) =0

!

, Where v=c=w/k and @, =nzc/l

For a normal mode n, the expression may be written as

w, X
In(2,8) = (A COSn t + By sin 1) (sin =)



 The total displacement, which represents the shape of the plucked string at t, is given by
summing the normal modes

@, X
C

Y=Y, =Y (A, cosapt+B,sinmt)sin

 The arbitrary constants A, and B, have to be determined.
 Recall the initial conditions att=0; i.e., y# 0 and v = dy/dt = 0 ( stationary plucked string)
 To obtain the representation of the series that satisfies the initial condition at t = 0, the total
displacement is rewritten as
o/

yol(x) = Z yalx) = Z (A, cosw,t + B, sinw,t) sin ad

________ 1 L

+ Aﬂsin—”x: at 1 =0

Fourier series of displacement




* The velocity of the string at time t = 0.
e, .
vo(x) = 5-v0(x) = Y Iu(®)

= E (—wyA , sinwyt + w,B, coswyt) sin

WpX

C

» Both displacement y,(x) and velocity v,(x) at t = 0 can be written in the form of
Fourier sine series.
 Generally, A, and B, can be determined for a string of length | from

2 (! LW
A”:?j yﬂ(x]sm—”xdx
0 ¢ 4= Degrive this!

:
% j vo(x) sin Ut dx

- RN 2.




Determination of the Fourier coefficients

Fourier coefficient A, of displacement y,(x),

Similarly, the Fourier coefficient »,B, can be obtained. @& TRYTHIS!



To obtain particular forms of A, or B, the displacement function of the plucked string has to be clearly
stated.
Referring to the figure, the displacement of a string length I, center plucked a distance d is given by

A
y 2ddx [
J’{](I) = T 0<x< E
2d(l —x) I
d — — < x=<]
f ) ==
0 12 | X

Due to the plucked string released from rest (v,(x) = 0), B,,’s are zero.
Only A;’s are of interest and found to be

/2 F _ r
Anzz[j %ﬁinw—xdx j 2d(l I)sinﬂd

f]
<= Only n odd is considered.

[ 0 [ L" UE [ e
8d . nmw ne
= —— sin (fm“u.:,,:—)
n-m- 2 [
8d nz @, X
Therefore, the total displacement can be written as Yo(¥)= 2 A sin <0 c = ( 5 SIN 7j3 nT
n odd nodd \ N 7’

27




Recall the energy in each of normal modes of standing wave vibration, E,=imw;(A;+B;)

Because B, ’s are zero, the energy of nth mode of vibration can be written as

" @, =nzc/l

1 64d*mw?

En — —mwz 2 - mug 2
4 " " 4(n2x?)

SEoen

2 2 2 .2
The total vibrational energy of the string is givenby E = Z E, = lﬁddm Z w, _ 16d"c"m Z RS

nodd gt I e
. dme2d?  2Td> l .
Or E=) En=—F—=—— where  }  -5=- From***inp.17
nodd

In summary,
A plucked string can be represented by a Fourier sine series.
In the absence of dissipation, the total vibration energy must equal to the potential energy of the

plucked string before release.
The energy nth mode is proportional to n-2. Higher modes contribute less energy to the vibration.

Even modes are forbidden by the initial boundary conditions




Summary

(1) General wave equation for a wave on string

(2) Apply the boundary conditions @ x =0 and x = | (%, £) = (A, cosw, t + B, sinw, t) (Smﬂ)
and obtain an appropriate wave function " " c

(3) Obtain the Fourier sine series of displacement and
velocity Vo (x) = z A, sm

vo(x) = z wy, By, sm—

(4) Apply the initial conditions at t = 0 of displacement
and velocity for a specific shape of string, y =0 and v =

= ' ' . WX 8d nNz) . w,X
dg)//bdt_ (’)A\( statéonardy r|?Iu|;:kec_l str_lng), e o th - YO(X)= Z A, sin—= = Z( - Sm?j h
tain 0 @By an the Fourier sine series of the specific o C  ogg\n 72 C
shape of string y T
I 2me?d?*  2Td?
(5) Obtain the energy E=y g, =L X



Fourier series analysis of a rectangular
velocity pulse on a string

*Astring of length I, fixed at both ends, is struck by a mallet of width a about its center point.

*The initial condition at the moment of impact in terms of displacement and velocity are given as

yo(lx) =0 _o®) _ _ s a
vo(x) 5 0 for i 373
| [ a |
«~ a —» =v for Illx —=| <= |
2| "2
"’ |
___________ 1
' X : i_g< <£+E :
- ) . L2_2-""272 !

Figure 10.6 Velocity distribution at time t = 0 of a string length [, fixed at both ends and struck
about its centre point by a mallet of width a. Displacement yq(x) = 0; velocity vg(x) = v for
x —[/2| < a/2 and zero outside this region




 Recall the previous situation of the plucked string, arbitrary constants A, and B, can be found from

) {
A, = 7 J yolx)sin “rt dx
C
0 Note: we can start solving the
« problem from step 4 according to the
L ox summary table
WpBy == J vo(x) sin —— dx
[ 0 |':.'
» However, in this case, A,’s are zero. (WHY?)
« This gives
v (x)—Z ' —Zu B, sin -
h - }"'n — ntdp p
n "
) l/24a/2 L WX
e Therefore, wpBy =— J vsin — dx
[ +i/2—a/?2 C
| 4v . nm . nma !

= —81m — simnm — 1|

o 20 20




4v . nma . wpx
» Only n odd is considered. Thus, vo(x) = Z — sin —— sin —

— nm 21 C

« The total energy of vibration is found from the summation of energy per mode of oscillation.

dmvic? | 5 wpa

E,=——sin .
E E ) ." (U —
[<ws 2c nT

 The expression shows that again the energy of nth mode is proportional to n-? (because o, = nnc/l)
and decreasing with increasing harmonic frequency.
» The energy of mode nth can be rewritten in terms of angular frequency ®, as

~ mv*a®sin®(wya/2c)

E,(w)=
W=7 (waa/2¢)?
F—— = where o= wya/2c

How does the distribution of the energy look like?




Energy spectrum of the harmonlc o,

The curve of sina/a? appears as N
\ the envelope of the energy values The'
T : the .
N | Eplo) spectrum |
s N |‘\ I’
Y \ /I
hs \ ,
En(o) N _ L > )/
\ The first zero of the, 0’
* envelop occurs ., b

-
Il R

E; N when ,_22C




What do we learn from the energy spectrum?

*The major portion of the energy in the velocity pulse is to be found in the low frequencies.
*The width (measured from the highest energy to the first zero of the energy) of the central
frequency pulse contains most of the energy.

This range of energy-bearing harmonics is known as the spectral width of the pulse given as

2me
Awm=—
&l

For any spatial width a = Ax, the spectral width becomes  AxAw = 27c
*Because At = Ax/c, this gives AwAt =2t or AvAt~1 knows as the Bandwidth Theorem.
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[

The periodic signal
. - | —
The periodic signal
=]

+1

1
—_—

1 0.5 0 0.5 +1 -1 0.5 0 05+l
Time (sec) Time (sec)
> o
<
2 4/n E 4/n
& g
= 4/3n = 4/3n
T 4/5=n T
, | 4 | ,
1 3 5 2 6
Frequency (Hz) Frequency (Hz)

(a) (b)

(a) The periodic square wave with period of 1sec, and its corresponding spectrum,
(b) The square wave with period reduced to 0.5 second and its corresponding spectrum.
The relation just follows the bandwidth theorem , AvAt ~ 1.




Maybe we could hit YOUR BRAIN with our radiowave hammer...

Applying the concept
Fourier series analysis of
disturbed wave to MRI

the radiowaves emitted by hydrogen nuclei in the
body, after hitting them with a radiowave hammer.

http://slideplayer.com/slide/8408101/26/images
/26/Maybe+we+could+hit+YOUR+BRAIN+with+o
ur+radiowave+hammer%E2%80%A6.jpg

w
)]


How does an MRI machine work_ (720p).mp4

The frequency
spectrum of Fourler

series

*The Fourier series can always
be represented as a frequency
spectrum.

N,
./\_.,-\."/\: ‘v‘u
R N

A VAN L
"
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£y = 20 sin w + 1 sin 3w« L sin 5x+ L sin 7x)
H 3 5 Fi

Frequency
] ;? [ "fTﬁ spectrum
¥ 0 T 2K
L |
X ar EXx Fi
(a)
E1 i =F HTG
[
wy =57
E
5 & g
3 ; 'D 1 N
ity dan Sany 7 ay
(b)
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\| ilnmu\xbﬂll --\;/ /
'm..,\_\. | II S
Ay |
\A frequency

"

fll

This relation explains the
wider interval between the ||
adjacent odd harmonics in

https://tex.stackexchange.com/questions/127375/replicate-the-fourier-
transform-time-frequency-domains-correspondence-illustrati%3E

a shorter string. .
= E/ E/
r’fl’;\\\_ . . . . | IEE 49
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Fourier series to Fourler Integral (1)

-Recall the Fourier representation in the exponential form f)=)_ dne”

n=—2o0

where 2d, =a, —ib,(n=0) and 2d, = a_, +1b_px(n < 0).

*Using the time as a variable, the Fourier representation is rewritten as flt)= Z dpe'™"
*The coefficient d_ can be found from 1 (72 o o
n d, = 7 J_m fit)e dt - Derive this!

*Given o =2nv, and T is the period, the Fourier series becomes

T2

[ 1 1

i — 12 ! i 12mmee g t
t T dt | e =
f(t)e ] T

=3 J

n=—>00

T2



Fourier series to Fourier Integral (2)

*The conversion of the Fourier series to Fourier integral is based on following assumptions :
(1) The period T approaches infinity,

(2) The frequency v, = 1/T — 0 and 1/T becomes infinitesimal and may be written as dv,
(3) nv, =,

(4) The unit change in n becomes an infinitesimal change.

*The Fourier integral is therefore written as

f{t}=Jxl [r f{t’}e-ﬂm“dt’] et dy

—o0 —io0



Fourier integral and Fourier transform

*When {(t) is non-periodic, the infinite number of frequency components in the integral form (not the sum) can be
written as

flt)= J:ﬂ F(v)e™™ du

'Where F{I‘f} — JI' f{tl'}ﬂ—ilrrw"dt!

Is called Fourier transform of f(t).
This shows that integration with respect to one variable produces a function of the other.

*Both variable forms Fourier pair of transform and the product is non dimensional.



Example of Fourier transform :
slit function

*Function of narrow slit
extending d in time and

< d/2 .
F(v)= J flH)e ™™ dt = J he =™ dt
—00 —d /2

—-h S11 o

[E—iEm:ad.."E o E+i2nu.-;|‘.."2] — hd

of h@lght h 27w o
h f 2 ()
f () or |t|<d/ :
0 for [t|>d/2 "
t
h ha )
J |\ e
—1_:;9}— time f”""‘*u ’U;'rh"‘\v




Example of Fourier transform :
The Gaussian curve

o0

-Th_e Gaug,sian functi_on of Flv) = pe—tlo g —idmr 4.
height h i1s symmetrically o | -
Centered at t :O iS given _ ;!E[—J'I."e:rl—121'r[.-'f+;rr3[..-£g£]E_J-ra![..-i.r_rzdt
o - Y
by — ;!E[—nzuz-r.rz] J ‘__:—I:J',-"-:'.r+1'L:|Tr,«!'.r]2 dt Given j e_x dx = \/;

f(t)=he /" 2
F(v)= hor¥e 7'
°c IS the width parameter.




normalized Gaussian function

. \ funetion *As height h —» 0, the
S width & — 0.
(o7r1/2) o 2 ;
—+The normalized
1 3 Gaussian function
s becomes infinitely
Height of the narrow which defines
function " the Dirac delta (8)

(a

function.
é function (1)

)
*The transform covers
. 2\, an increasing
frequency components.
b) v

(

Figure 10.12 (a) A family of normalized Gaussian functions narrowed in the limit to Dirac’s delta
function; (b) the family of their Fourier transforms
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Homework #11

10.3,10.4




