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Fourier Series
•Any function which repeats itself regularly over a given interval of space or time is called 
a periodic function; e.g. f(x) = f(x) where  is the interval or period.

•Almost all periodic functions of interest using the method of Fourier Series may be 
represented by the series,
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Fourier series of a square wave



Fourier Series in several equivalent forms
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Coefficients of an and bn
•To find the values of  the coefficient either an  or bn, let’s multiply the following equation with  
cos𝑚𝑥 or s𝑖𝑛𝑚𝑥 and then integrate with respect to x over the period of 0 to 2

•And then apply the following conditions:

0׬
2𝜋
cos𝑚𝑥 cos 𝑛𝑥 𝑑𝑥 = ቊ

0 𝑖𝑓 𝑚 ≠ 𝑛
𝜋 𝑖𝑓 𝑚 = 𝑛

0׬
2𝜋
s𝑖𝑛𝑚𝑥 cos 𝑛𝑥 𝑑𝑥 = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 𝑎𝑛𝑑 𝑛

Now try to determine either an  or bn 
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Interpretation of the Fourier Series (1)
1) The constant term (1/2)a0 : this is the average of the function  over an interval.  

Recall the coefficient an : 𝑎𝑛 =
1

𝜋
0׬
2𝜋
𝑓 𝑥 cos 𝑛𝑥 𝑑𝑥

As n = 0, we have 𝑎0 =
1

𝜋
0׬
2𝜋
𝑓 𝑥 𝑑𝑥 and this leads to  

𝑎0

2
=

1

2𝜋
0׬
2𝜋
𝑓 𝑥 𝑑𝑥 which is the 

average of the function over 2 interval .

The constant term can be varied by moving the function with respect to the x axis.
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The periodic function is symmetric 

about x axis, its average 
𝑎0

2
is zero.



Interpretation of the Fourier Series (2)
2) Generally, Fourier series is represented by the combination of even and odd 
parts. Whether the function is completely even (f(x) = f(-x)) or completely odd 
(f(x) = -f(-x)) can often determined by the position of the y-axis.

For example
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This periodic function 

is represented by even 

function with zero 

constant.

This periodic function 

is represented by odd 

function with zero 

constant.



3)  Terms in the series and their combination are responsible for the shape of the series 
representation.
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Interpretation of the Fourier Series (3)

• The fundamental or first 

harmonic has the frequency of 

the square wave.

• The higher frequencies build up 

the squareness of the waves.

• The highest frequencies are 

responsible for the sharpness of 

the vertical sides of the waves.

https://sites.google.com/a/georgiasouthern.edu/julia-inozemtseva/teaching-math-animations-and-
pics?tmpl=%2Fsystem%2Fapp%2Ftemplates%2Fprint%2F&showPrintDialog=1

The more the higher frequency 

components are added, the 

closer of the squareness of the 

wave becomes.



Frequency response test of amplifiers

Loss of the sharpness at the edges of the 
waves shows that the amplifier response is 
limited at the higher frequency range.

9http://www.engineering-bachelors-degree.com/electronic-components/uncategorized/square-wave-oscillators-and-op-amp-square-wave-oscillator/
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• Constant is zero (symmetry around x axis).

• Represented by odd function (sine 

function).

• More than 3 harmonics required to 

faithfully represent the edge sharpness.

• Constant is not zero 

(asymmetry around x axis).

• Represented by even and 

odd functions.

• More than 3 harmonics 

required to faithfully 

represent the edge 

sharpness.



Fourier Series for any interval
•Any section or interval of a well behaved function may be chosen and expressed in terms of 
Fourier Series.

•This series will accurately represent the function only within the chosen interval.

•If the interval is represented by a Fourier cosine series the repetition will be that of an even 
function, if the representation is a Fourier sine series and odd function repetition will 
follow.

12



13



Arguments in terms of phase angles
•So far the arguments of cosine and sine functions are given as x assumed to be 
measured in radians.

•However, if x is assigned as a distance the  a factor of 2/l is needed to transform 
the distance into an angle unit. With this factor, when x = l, the phase angle 
changes by 2.

•For example, an original function shown in the figure below can be represented 
as a sine series (odd function) over a half interval [0,l/2]
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• The given function can be represented by the sine series as follows,
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Note : only the behavior of the function within the half interval 0 to l/2 can be described by fo(x)



Q: Application of Fourier Sine Series 
to a Triangular Function

•The figure below shows a function which we are going to describe by a sine series in half-
interval 0 to . The function is 
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This function defined over a 

limited interval can be used to 

described the behavior of a 

plucked string. 
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A: Application of Fourier Sine Series 
to a Triangular Function

Fourier sine series is chosen to represent 

the half interval of a triangular function

bn : coefficients of 

the odd part

Permitted harmonics 

of the plucked string

***
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https://www.youtube.com/watch?v=_X72on6CSL0
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http://slideplayer.com/slide/6018598/20/images/5/Half+Range+Expansion.jpg



Application to the energy in the 
normal modes of a vibrating string

•If we take a string of length l with fixed end and pluck its center a distance d, we have a 
triangular configuration of the a interval as shown in the figure below.

•According to the previous section, this configuration expected to be represented by the 
Fourier sine series.

20http://users.aber.ac.uk/ruw/teach/260/wave2.php

d
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•Under this particular situation, the series representing the plucked string at time t is equivalent 
to the total displacement of the normal modes or standing waves occurring once the string is 
released.

•To find the displacement of a normal mode or standing wave vibration, the following standing 
wave equation has to be solved using the method of separation of variable.

•The wave equation : 

•The solution that fits the boundary condition; i.e., y(x = 0, t) = y(x= l, t) = 0, is found to be                                                                                                        

2 2

2 2 2

1y y

x c t
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( )cos sin sin n
n n n n n

x
y A t B t

c


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Derivation of a normal mode wave 
function in summary
•Possible solution may be given by   y(x,t) = X(x).T(t)

•By substituting the solution back into the wave equation, rearrange the equation 
and equate each side of the equation to a constant, we then end up with two linear 
ODE as follows,

•This leads to      
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Expression of a normal mode wave function

•From the derived general forms of the normal mode wave function, a particular form can be 
obtained once the boundary condition, i.e. y(0,t) = y(l,t) = 0  is considered.
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( ) ( ) ( ) ( ) ( )1 2 1 2, cos sin cos siny x t X x T t C kx C kx D kvt D kvt=  = +  +

( ) ( ) ( ) ( ) ( )2 1 2, sin cos siny x t X x T t C kx D kvt D kvt=  =  +

Apply y(0,t)  = 0

For a normal mode n, the expression may be written as

𝑦𝑛 𝑥, 𝑡 = 𝐴𝑛 cos𝜔𝑛 𝑡 + 𝐵𝑛 sin𝜔𝑛 𝑡 sin
𝜔𝑛𝑥

𝑐 ,  where   and   nc k n c l   = = =

Apply y(l,t) = 0
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• The total displacement, which represents the shape of the plucked string at t, is given by 

summing the normal modes

• The arbitrary constants An and Bn have to be determined.

• Recall the initial conditions at t = 0; i.e.,  y  0 and v = dy/dt = 0 ( stationary plucked string)

• To obtain the representation of the series that satisfies the initial condition at t = 0, the total 

displacement is rewritten as

( )cos sin sin n
n n n n n

x
y y A t B t

c


 = = + 

Fourier series of displacement
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• The velocity of the string at time t = 0.

• Both displacement y0(x) and velocity v0(x) at t = 0 can be written in the form of  

Fourier sine series.

• Generally, An and Bn can be determined for a string of length l from

Derive this!

Fourier series of velocity



Determination of the Fourier coefficients

•Fourier coefficient An of displacement y0(x),
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Similarly, the Fourier coefficient  nBn can be obtained. TRY THIS!
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• To obtain particular forms of An or Bn, the displacement function of the plucked string has to be clearly 

stated.

• Referring to the figure, the displacement of a string length l, center plucked a distance d is given by

• Due to the plucked string released from rest (v0(x) = 0), Bn’s are zero.

• Only An’s are of interest and found to be

• Therefore, the total displacement can be written as 

d

Only n odd is considered.

( )0 2 2
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• Recall the energy in each of normal modes of standing wave vibration,

• Because Bn’s are zero,  the energy of nth mode of vibration can be written as

• The total vibrational energy of the string is given by

• Or where   

In summary,

• A plucked string can be represented by a Fourier sine series.

• In the absence of dissipation, the total vibration energy must equal to the potential energy of the 

plucked string before release.

• The energy nth  mode is proportional to n-2. Higher modes contribute less energy to the vibration.

• Even modes are forbidden by the initial boundary conditions

2

n n c l

E n

 

−

=

 

From *** in p.17



Summary
(1) General wave equation for a wave on string

(2) Apply the boundary conditions @ x = 0 and x = l

and obtain an appropriate wave function
𝑦𝑛 𝑥, 𝑡 = 𝐴𝑛 cos𝜔𝑛 𝑡 + 𝐵𝑛 sin𝜔𝑛 𝑡 sin

𝜔𝑛𝑥

𝑐

(3) Obtain the Fourier sine series of displacement and 

velocity
𝑦0 𝑥 =෍𝐴𝑛 sin

𝜔𝑛𝑥

𝑐
, 𝑣0 𝑥 =෍𝜔𝑛𝐵𝑛 sin

𝜔𝑛𝑥

𝑐

(4) Apply the initial conditions at t = 0 of displacement 

and velocity for a specific shape of string, y  0 and  v = 

dy/dt = 0 ( stationary plucked string),

Obtain An, nBn and the Fourier sine series of the specific 

shape of string

(5) Obtain the energy
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Fourier series analysis of a rectangular 
velocity pulse on a string

•A string of length l, fixed at both ends, is struck by a mallet of width a about its center point.

•The initial condition at the moment of impact in terms of displacement and velocity are given as

30

𝑙

2
−
𝑎

2
< 𝑥 <

𝑙

2
+
𝑎

2



31

• Recall the previous situation of the plucked string, arbitrary constants An and Bn can be found from

• However, in this case, An’s are zero. (WHY?) 

• This gives 

• Therefore, 

Note: we can start solving the 

problem from step 4 according to the 

summary table 
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• Only n odd is considered. Thus, 

• The total energy of vibration is found from the summation of energy per mode of oscillation.

• The expression shows that again the energy of nth mode is proportional to n-2 (because n = nc/l) 

and decreasing with increasing harmonic frequency.

• The energy of mode nth can be rewritten  in terms of angular frequency  n as 

where  

; ∵ 𝜔𝑛 =
𝑛𝜋𝑐

𝑙

How does the distribution of the energy look like?



Energy spectrum of the harmonic n

33

The curve of sin2/2 appears as 

the envelope of the energy values 

for each n.

The first zero of the 

envelop occurs 

when

The true 

shape of 

the 

spectrum



What do we learn from the energy spectrum?

•The major portion of the energy in the velocity pulse is to be found in the low frequencies.

•The width (measured from the highest energy to the first zero of the energy) of the central 

frequency pulse contains most of the energy.

•This range of energy-bearing harmonics is known as the spectral width of the pulse given as

•For any spatial width a = x, the spectral width becomes  

•Because  t = x/c, this gives  t  2 or  t  1   knows as the Bandwidth Theorem.
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35https://cnx.org/contents/cvkPOvcs@1/Fourier-Series-Square-wave

(a) The periodic square wave with period of 1sec, and its corresponding spectrum, 

(b) The square wave with period reduced to 0.5 second and its corresponding spectrum.

The relation just follows the bandwidth theorem , t  1.
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Applying the concept 

Fourier series analysis of 

disturbed wave to MRI

How does an MRI machine work_ (720p).mp4


The frequency 
spectrum of Fourier 
series
•The Fourier series can always 
be represented as a frequency 
spectrum.
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This relation explains the 

wider interval between the 

adjacent odd harmonics in 

a shorter string.
https://tex.stackexchange.com/questions/127375/replicate-the-fourier-
transform-time-frequency-domains-correspondence-illustrati%3E

time
frequency



Fourier series to Fourier Integral (1)

•Recall the Fourier representation in the exponential form

•Using the time as a variable, the Fourier representation is rewritten as 

•The coefficient dn can be found from  

•Given    = 21 and T is the period, the Fourier series becomes

38

Derive this!



•The conversion of the Fourier series to Fourier integral is based on following assumptions :

(1) The period T approaches infinity,

(2) The frequency 1 = 1/T  → 0 and 1/T becomes infinitesimal and may be written as d,

(3) n1 = ,

(4) The unit change in n becomes an infinitesimal change.

•The Fourier integral is therefore written as

39

Fourier series to Fourier Integral (2)



Fourier integral and Fourier transform

•When f(t) is non-periodic, the infinite number of frequency components in the integral form (not the sum) can be 
written as

•Where  

is called Fourier transform of f(t).

•This shows that integration with respect to one variable produces a function of the other.

•Both variable forms Fourier pair of transform and the product is non dimensional.
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Example of Fourier transform :
slit function
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•Function of narrow slit 
extending d in time and 
of height h

( )
for   2

0 for   2

h t d
f t

t d

 
= 





Example of Fourier transform : 
The Gaussian curve

•The Gaussian function of 
height h is symmetrically 
centered at t =0 is given 
by 

• is the width parameter.
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•As height h → 0, the 
width  → 0.

•The normalized 
Gaussian function 
becomes infinitely 
narrow which defines 
the Dirac delta () 
function.

•The transform covers 
an increasing 
frequency components.
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Homework #11
10.3, 10.4
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